Int. J. Solids Structures, 1977, Vol. 13, pp. 995-1005. Pergamon Press. Printed in Great Britain

THE DYNAMIC INDENTATION OF AN ELASTIC
HALF-SPACE BY A RIGID PUNCH

JacoB Asoupt

Department of Solid Mechanics, Materials and Structures, School of Engineering, Tel-Aviv University,
Ramat-Aviv, Israel

(Received 3 January 1977; revised 2 May 1977)

Abstract—The two-dimensional contact problem between a rigid die and an elastic half-space is considered.
A numerical method of solution is proposed which involves an iterative process which is continued until
the correct solution is obtained according to certain criteria. The method is general enough and can handle
punches of arbitrary shape as well as time-dependent indentation velocities. The treatment is unified for
subsonic, transonic and supersonic indentations. The numerical procedure is checked with analytical results
which are known in several special cases and good agreement is obtained. Results are presented for the
smooth as well as frictional indentation by a wedge-shaped die and for a smooth parabolic punch.

INTRODUCTION

In elastodynamic problems which involve the indentation of the surface of a solid by a rigid
indentor, mixed boundary conditions over a time-dependent region are encourntered. As the
indentor is depressed into the solid, there are some points on the surface of the solid which at
first have traction free boundary conditions but later have displacements boundary conditions
in order that the boundary of the body confirm to the geometry of the indentor in the contact
region. The time-dependent contact region is not known in advance (except in supersonic
indentations) but must be determined from the process of the solution of the contact problem.
Obviously, this fact severely -complicates the problem and, as a result of this, analytical
solutions are known only in some simple cases. A review on various contact problems can be
found in [1].

For a wedge-shaped indentor pressed to an elastic half-space at a constant velocity,
Robinson and Thompson{2] obtained the stress at the surface of the half-space as well as the
contact velocity which is assumed to be constant. An extension to the indentation problem by a
conical die is presented in [3). Bedding and Willis[4, 5] solved the same problems for the case of
perfect adhesion but not including the case of transonic indentation which is still an open
problem. In [6] the subsonic frictionless indentations by a wedge and parabolic punch are
treated. In.all cases explicit expressions for the stress and displacement components at any
point of the half-space are evidently very hard to obtain.

Generalization to the frictionless identation by a rigid punch of arbitrary shape was
discussed in [7] but under the facilitating assumption that the contact expands in a supersonic
speed. As a result of this assumption, the contact region is completely defined by the portion of
the die which has crossed the original position of the surface of the half-space, so that it is
known in advance.

Brock[8] studied the smooth indentation by a rigid indentor of arbitrary shape and varying
indentation velocity. He assumed that the indentor shape and displacement history can be
represented by polynomial curves but under the restriction that the contact region expands at a
constant sub-Rayleigh speed.

In this paper we propose a numerical method of solution which is able to solve the
two-dimensional dynamic contact problem of the half-space. The method is general enough and
can treat problems involving punches of arbitrary shape as well as varying indentation velocity.
The numerical algorithm is unified in the sense that it need not distinguish between subsonic,
transonic or supersonic contact velocities. This is in contradistinction to the analytical treat-
ments in which the mathematical attack of each case is different. Due to the generality of the
procedure, problems in which time-dependent contact velocities are encountered can be also
treated. This is in contrast to the previous analytical treatments where the contact velocity was
assumed to be constant. In those problems which involve time-dependent velocities, the contact
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velocity might vary from the subsonic to the transonic and supersonic region. The cases of
smooth as well as frictional indentations can be treated by the present numerical method with
the same ease.

The numerical process is based on an iterative procedure which is continued until the
correct solution is obtained. This solution is determined by the equations of motion, the moving
mixed boundary conditions and the requirements that the contact stress beneath the punch is
compressive and that no interpenetration can occur outside the contact region. The reliability of
the method is checked in several situations where analytical results are known and good
agreements are obtained.

Results are presented for smooth as well as frictional wedge-shaped punch and for a
parabolic punch. The applicability of the method of solution to other problems is mentioned.

FORMULATION OF THE PROBLEM
Consider a homogeneous isotropic elastic half-space y 0. The two-dimensional elas-
todynamic equations of motion, in the absence of body forces, are given by
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where u(x, y, t) = {u, v} is the displacement vector whose components u(x, y, t) and v(x, y, t) are
in the x and y directions respectively and ¢ is the time. In (1) A, u are the Lamé constants of the
material and p its density. The compressional and shear wave speeds in the material are given
respectively by ¢, = [(A +2p)/p]'?, c2= [w/p]"2.

The half-space is assumed to be initially at rest. At time ¢ =0 a rigid punch starts to indent
the half-space at a velocity V(t). It is assumed that the indentor is symmetrical about the y-axis
(although the proposed method of solution can be extended to the non-symmetrical case).
During the indentation the generally unknown contact region between the punch and the
half-space varies with time.

The boundary conditions at the surface of the half-space in the case of a smooth indentation
are

v=f(x,t), ox=0 for |x]=X(t), y=0, t>0 ()]

Ta=ay=0 for |x|>X(@), y=0, t>0 3)

In (2-3) oy are the components of the stress tensor, f(x,t) is the prescribed vertical dis-

placement imposed over the time-dependent region of contact of the surface and X (t) describes
the position of the edge of the unknown moving region with X(0)=0.

The appropriate boundary conditions when perfect adhesion between the indentor and the
half-space is assumed (i.e. a slip at the interface is completely prevented) are given by (3) with

%’;‘=o, v=fGe1) for [|sX@), y=0, t>0 @

For a wedge-shaped die, see Fig. 1(a), the function f(x, t) in (2) has the form
fx,)=p(t)-xtan o )

where p(r) is the penetration distance along the y-axis of the die, i.e. p(t) = v(x =0,y =0, ). If

in addition the punch indents the haif-space at a constant speed V, then p(t) = Vt which is the

problem considered in [2], {4], [5] and [6].
For a parabolic punch, see Fig. 1(b), the function f(x, t) is of the form

f(x, )= p(t)-bx? (6)

where b is a parameter. The case of a uniformly accelerated frictionless indentation for which
p(t) = at*/2, such that the velocity of indentation is given by at, is considered in [6].
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{a) {b)
Fig. 1(a) A wedge-shaped punch. (b) A parabolic punch.

The principle difficulty in contact problems is the determination of the region of the contact
X(t) from which the contact velocity a(f)=X(f) can be obtained. In all the analytical
treatments, problems with constant a were considered. For constant indentation speed V =p
of a wedge-shaped punch and for uniformly accelerated pressing of a parabolic punch the
contact velocity a is constant.

In the following we present a numerical algorithm which enables us to solve the dynamic
contact problem with various forms of f(x, t) so that varying indentation and contact velgcities
as well as various shapes of punches can be treated. The problem of a wedge-shaped punch
pressed with a constant speed as well as a parabolic punch pressed with a uniform acceleration
are obtained as special cases.

NUMERICAL TREATMENT

The numerical solution of the dynamic contact problem which was formulated in the
previous section can be divided into two parts.

(1) In the first part, a finite-difference approximatien of the equations of motion (1) is
performed by introducing a grid of mesh sizes Ax and Ay in the x and y directions respectively,
together with a time increment At and replacing the derivatives of u(x, y,t) in (1) by their
corresponding central difference expressions. Consequently, we obtain an explicit three-level
difference scheme from which it is possible to compute the displacement vector at time ¢ + At
whenever its values at the previous time steps at ¢ and ¢ — At are known throughout the medium
y > 0. Furthermore, the difference approximation is of a second order accuracy. The explicit
form of the difference equations can be found in Ref. [9], and we need not describe it here. It
was shown in [9] that the difference equations are stable with the stability condition

(¢’ + c)AY/Ax) =<1 ™)

for Ax = Ay.

(2) The second part of the numerical procedure consists of the treatment of the boundary
conditions (2)~(4) taking into account the fact that the region of contact 0<x = X(¢) is not
known in advance, but should be determined from the requirements of the dynamic contact
problem. These requirements are: (a) The normal stress o, beneath the contact region of the
punch with the half-space must be compressive. (b) No interpenetration outside the contact
region can occur. This implies that the deformed position of the boundary outside the contact
region must lie below the surface of the punch.

The numerical process for the treatment of the boundary conditions is based on the fact that
if both these requirements are satisfied as well as the boundary conditions (2), (3) or (2) and (5),
then the correct solution has been obtained. If these requirements are not satisfied then an
iterative procedure, which is described in the following, should be continued.

We start the iterations with X (1) = X(t) where Xo(t) is the abscissa of the point at which
the punch intersects the x axis at time t. For the wedge-shaped punch, for example, Xy(t) =
p(t)tan 8 (see Fig. 1(a)) and for the parabolic punch, Fig. 1(b), Xe(t)=[p(t)/b]'?. Having
determined the edge of the region of contact we can impose the appropriate mixed boundary
conditions.
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The boundary conditions (2), (3) at the surface of the half-space y =0 are imposed by
introducing the explicit expressions for the stress components oy, and o,, in terms of the
displacement gradients and approximating the latter by central difference expressions for
derivatives in the x direction and by forward difference expressions for those in the y direction.
Consequently, at every time step ¢ = nAt (n=1,2,...) a system of algebraic equations in the
unknown displacements at the boundary y =0 is obtained.

Let us denote

Uijn = u(iAx’ iAY- nA‘) = \I(X, Y, t)

i=0,x1,%2,...
j=0,1,2,...
n=12,...
8
Then the above system can be written in the form
Bion— €[Vir100— Vi-ton] = “a.l.n} ‘o .
vioa = f(iAx, nAL) i=0,1.2,...is @
Wion = €[Divion— Vi-108] = ul.l.n} P .
=i+ 1,ip+2,... 10
Vion— €8{Uiv1,0n = Ui-10a] = Virm [=hrLhb (10)

In the above equations for the unknown surface displacements u;o,, Vign
io=Xo(t)Ax, € =Ay28x, 8=AJA +2u)

and we employ the fact that the punch is symmetric with the y-axis so that points x <0 need
not be considered.

It is obvious from (9) that we can immediately determine the surface displacements at the
points i =0,1,..., 00— 1. For i = i, io+1,... the system of equations are coupled. We found
that it is very convenient and efficient, both from rate of convergence and programing points of
view, to solve this system of equations by the Gauss-Seidel iterative procedure[10). To this end,
we notice that it is possible to split the equations and represent them in the form

Y, =EY,+F r=1.2 (11)

such that the first system (r = 1) is uncoupled to the second one (r = 2). In (11) Y, are vectors of

unknowns
Yg = {u(‘,,o,,.. Vig+t 0 Wige20.0s - - }

Y2 = {Uigr1.0.m Vig+20.0 Bigt30ms - - -} (12)

and E, are coefficient matrices whose diagonal elements are all zero. Their rows contain the
following typical non-zero elements

—€
-:;: . a3
Finally, the vectors F, in (11) are
Fi={lig1n— €Vig-10m Digtiims Bige2lms - -}
(14)

Fa = {Uigs1.10 = €Vigons  Vigt2ilns  Uigt3 1ns - + -}

According to the Gauss-Seidel iterative procedure we compute the mth approximation of the
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[th component of Y, by employing the mth approximations of the already computed g
componts (g <!) of Y,. Thus

Y™=LY™+0, Y™ +F. m=12,... - (15)

where L, and U, are the lower and upper triangular matrices of E,, respectively. For Y, we
employ the values of Y, in the previous time step n — 1.

In order to show that the iterative process (15) converges, we employ theorem (3.4) in
Varga[10], which asserts that if the matrices I - E, are irreducibly diagonally dominant then the
iterative procedure (15) for the equations (I-E,) Y, = F, are convergent for any initial vectors

[(1)]

The matrices I — E, are indeed irreducible since it can be verified by examining the location
of the elements (13) in E, that their directed graphs[10] are strongly connected. This property
expresses the fact that in each one of the system of matrix eqns (11), the equations are coupled
and it is not possible to reduce any system to the solution of a lower order matrix equation.

It remains to show that the matrices 1-E, are diagonally dominant, i.e.

Y KE)ml=1 1=1,2,... (16)

with strict inequality for at least one [. Referring to the typical rows of E, given by (13), we
obtain the following inequalities

e=Ay2Ax <1 for Ay=2Ax,
2¢ =Ay/Ax =1 for Ay=Ax,
2¢]8| = (Ay/AX)|AJA +2p)| = (Ay/AX)A/A +2u) < 1. a”n

In the last inequality, we have utilized the inequalities A +2u/3>0, u >0 for the positive
definiteness of the strain energy of an isotropic material, and also the relation A >0 for real
materials. Consequently, the matrices I~ E, are diagonally dominant for Ay = Ax with strict
inequality in (16) for at least one /. Hence the iterative procedure (15) is convergent.

Having computed all the displacements at the boundary y =0 of the half-space, we can
calculate the stresses within the assumed contact region and verify that the previous two
requirements for the dynamic contact problem are satisfied. If the answer is affirmative, we
deduce that the correct solution at time ¢ = nA¢ has been obtained so that we can proceed to the
next time step ¢ = (n + 1)Af. In the case of a negative answer, we modify the assumed contact
point iy by passing to a neighboring point and repeat the process by imposing again the
boundary conditions (9), (10) with the new value of i, and solving the resulting equations for the
displacements on the boundary. This iterative process is continued until all the requirements as
well as the boundary conditions are satisfied simultaneously yielding the correct contact region.
The boundary conditions (3), (4) for a perfect adhesion are treated similarly.

APPLICATIONS
In the following we apply the proposed method of solution to the problem of indentation of a
half-space by a wedge-shaped punch and parabolic punch. In some situations analytical
solutions are known which can be employed in order to assess the accuracy and reliability of
the numerical method. All the results presented in this paper were obtained with the spatial
increments Ax = Ay = d/50, where d is a reference measure of length and the time increment
C]At/d =0.01.

(1) Smooth indentation by a wedge at a uniform speed

Consider a rigid wedge-shaped die which indent the half-space at a given constant speed V. It
is assumed that the indentation is smooth so that the boundary conditions are given by (2), (3)
with (5) and p(t)= V1.

By employing the self-similar method of solution, Robinson and Thompson[2], obtained an
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analytical solution for the normal stress o,, at the surface of the haif-space for the different
cases of subsonic, transonic and supersonic indentation assuming that the contact velocity
a = X(t) is constant.

In the subsonic case in which a <cg, with cg being the speed of Rayleigh waves, the
contact surface stress beneath the punch is given by

7,y (x,0,1) =—Aarc cosh atfjx| |x|]<at (18)
with
A=4u(1-ci/c/)tan @/m.

Furthermore, in (18), the contact velocity « is determined by the relation{11]
f (Wed+ m* 1 [(Ya? + m?) ' 2R(-m?)] dm = 7 VI[4(1 - c*/c,?) tan 6] (19)
0
with
R(=m¥ = (1/c* + 2m?? = 4m*(Y/c > + m»)'"(1/c 2+ m)'2.

By a numerical integration of (19), the value of a for a given wedge angle 8 and the elastic
constants of the half-space can be determined.

In Fig. 2(a) the numerical and analytical solutions for o,,(x, 0, t) versus x/d are shown when
cit/d =0.5 and 1. The material is characterized by (cic,)*=0.3 and the velocity of the
indentation is chosen to be V/c,=0.05 (i.e. V/c, = 0.0274) with tan 0 = 0.1. The contact velocity
is computed from (19) yielding a/c, = 0.207 (whereas ao = Xo(t) = V/tan 8 = 0.274c)). It is well
seen that a good correspondence between the two solutions exists.

In Fig. 2(b) we exhibit the numerical solution for the vertical displacement at the surface of
the half-space v(x,0,t) versus x/d at the same times. The contact region between the wedge
and the half-space can be easily indentified in the figure from the plots of the stresses as well as
the displacements. The contact velocity can be obtained from the plots of the aumerical
solution yielding the value a/c, = 0.19 which is in a satisfactory agreement with the analytically
predicted value mentioned before.
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Fig. 2(a). Numerical solution (solid lines) and analytical solution (dashed lines) for the contact stresses

induced by the uniform frictionless indentation by a wedge-shaped die. The boundary conditions are given

by (2). (3) with (5) and (c,/c)*=0.3, Vic,=0.05, tan 8 =0.1. (b) Numerical solution for the vertical
displacements at the surface of the half-space.
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The analytical solution (18) yields a singularity for o, at x =0 due to the existence of the
corner of the wedge. The numerical solution, on the other hand, furnishes finite values for the
stresses at x =0 as can be expected. This is similar to the behavior obtained in crack
propagation problems where the finite values of the computed stress can be shown to
correspond to the asymptotic solution near the tip of the crack and therefore can be employed
in order to extract the stress intensity factor of the crack, see [12].

1t is obvious that the stresses and displacements can be produced easily for other points in
the half-space.

When the indentation velocity of the punch V increases, the contact velocity a increases too.
For cg < a < ¢, transonic indentation takes place for which the previous solution (18) is not
valid. In Fig. 3 the numerical solution for the surface normal stress and vertical displacement
is shown for (c)Jc)?=0.3, tan8=0.1 and V/c,=0.13 (i.e. V/c;=0.0712). The analytical
solution in this case is complicated and involves numerical integrations, but the velocity of
contact is still given by (19). Equation (19) yields the value a/c, = 0.735 whereas the numerical
solution yields a/c, = 0.71 indicating good agreement for this case too. It should be noted that
ap= V/tan 0 = 0.712¢, which is very close to the actual contact velocity.

When the indentation velocity V further increases such that the contact velocity a becomes
greater than ¢, supersonic indentation occurs in which no disturbances can propagate more
rapidly than the boundary of the region of contact. Hence, any point on the surface of the
wedge would come into contact with the boundary of the half-space at the instant at which it
crossed the original position on the surface y = 0. Accordingly, there will be no deformation of
the surface at points beyond the region of contact so that o = ay. Obviously, this advanced
information facilitates significantly the analytical treatment.

In the numerical solution we need not utilize this advanced information but start the
iterative process by assuming, as described in the previous section, that a = ao and then
proceed with iterative procedure. The numerical results indicate that a = ay is in faet the actual
contact velocity and no further iteration is needed. This remark is of importance since we need
not distinguish in the numerical procedure between subsonic, transonic and supersonic in-
dentations and the algorithm is unified and common for all cases. Indeed in cases when
non-uniform indentation of a punch takes place, it might happen that a = a(t) and some or all
three possiblities occur at different stages of the penetration.

An analytical expression due to Robinson and Thompson (2], for the surface normal stress
oy(x,0,t) in the case of the supersonic indentation by a wedge exist. The explicit expression
however, is lengthy and is not given here. It can be found in [11] where some obvious
typographical errors should be corrected.
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Fig. 3(a). Numerical solution for the contact stresses induced by the uniform frictionless indentation by a
wedge-shaped die. The boundary conditions are given by (2), (3) with (5) (cy/c,)?=0.3, V/c,=0.13,
tan 8 = 0.1. (b) Numerical solution for the vertical displacements at the surface of the half-space.
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In Fig. 4 the numerical and analytical solutions for o,,(x, 0, t) are showa for V/c;=0.12,
tan 8 = 0.1 and (ca/c;)* = 0.3 indicating satisfactory agreement. The value of the contact velocity
as readily obtained from the numerical solution is a/c, = 1.2. The numerical solution for the
vertical displacement is also shown exhibiting the instantaneous penetration of the punch, as
can be expected, and the displacement beyond the contact region vanishes (in contrast to the
previous cases where non-zero displacements were obtained outside the contact region).

(2) Frictional indentation by a wedge at a uniform speed

The problem of a rigid wedge-shaped die which indent the half-space at a constant speed V
assuming a perfect adhesion between the indentor and the half-space when they are in contact
(i.e. a slip at the interface is completely prevented), was studied by Bedding and Willis in [4]
and [5] for the subsonic and supersonmic cases respectively. Each case requires a different
analytical treatment. The relevent boundary conditions are given by (3)(4) with (5) and
pt)=Vt.

In Fig. 5 we present the numerical solution for the surface normal stress o,,(x,0,t) and
vertical displacement v(x,0,t) versus x/d for (c,/c2)*=3, tan8=0.1 and V/c;=0.06 (i.e.
Vic, = 0.0346). This solution is also contrasted in the figure with the frictionless case. It is clear
that both cases are very close so that the effect of the adhesion is minor. The contact velocities
are subsonic and have the values a/c, = 0.278 and 0.288 for the frictional and smooth indentors
respectively. These values are taken from the plots presented in [4). Our numerical solutions
yield the corresponding values a/c, =0.26 and 0.27 which indicate again good agreement with
the analytical derivations in [4]. Since the iterations involved in the numerical process start
from the value ay= Vitan @ = 0.346¢,, it turns out that several iterations are needed here in
order to obtain the correct solution.

It should be noted that an analytical treatment for the indentation problem of a wedge in the
transonic region under the assumption of a perfect adhesion between the indentor and the
half-space is not yet known, see {5], whereas a numerical solution for this case can be easily
obtained.

(3) Frictionless indentations of a wedge at a time-dependent contact velocity

We assume that the wedge indents the haif-space with the time-dependent velocity V(t).
The boundary conditions are given by (2), (3) with (5) and p(t) = 0.5at?, where a is a parameter,
so that V(t) = at. In this case the contact velocity « = X(t) will not be a constant as in the
previous cases and an analytical treatment of this problem is not known.

In Fig. 6 the surface stresses and displacements are shown for ad/c,*=0.08, tan 8 = 0.1
and (cJ/c))*=0.3. The initial iteration for the contact velocity ao = Xo(t) is given by ag=
0.5at/tan 8, which is a linearly increasing function of time. This figure illustrates, therefore, the
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Fig. 4. Same as Fig. 2 but with V/c, =0.12.
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Fig. S5(a). Numerical solution for the contact stresses induced by the uniform frictional (solid lines) and

smooth (dashed lines) indentation by a wedge-shaped die. The boundary conditions are given, respectively,

by (3), (4) and (2), (3) with (5) and (c,/c,)* =3, Vic,=0.06, tan 8 = 0.1. (b} The corresponding numerical
solutions for the vertical surface displacements.
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Fig. 6(a). Numerical solution for the contact stresses induced by the frictionless non-uniform indentation

by a wedge-shaped die. The boundary conditions are given with (2), (3) with (5) and p(t)=0.5ar%

adlc,*= 0.8, tan 8 = 0.1, (cy/c,)* = 0.3. (b) Numerical solution for the vertical displacements at the surface
of the half-space.

case of a varying contact velocity which has not been treated before. Due to the varying
contact velocity, the character -of the indentation will change in time from subseismic to
superseismic.
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(4) Frictionless indentation by a parabolic punch

For the dynamic frictionless contact problem of a parabolic punch with a half-space, the
relevant boundary conditions are given by (2), (3) with (6). In the case of a uniformly
accelerated punch for which p(t)=0.5at?, so that the indentation velocity V(t)=at varies
linearly with time, it turns out that the contact velocity a = X(¢) is constant and an analytical
treatment is given by Cherepanov and Afanasev[6] for the subsonic case. This analytical
solution will be employed as another test case to our numerical procedure.

According to [6], a closed form expression for o,, at the surface is given by

Tyy(x,0,1) = -Blat)* - x*]"?, |x|<at (20)

where B is a constant.

In Fig. 7 the numerical solution for the stress o,,(x, 0, ¢) and displacement v(x, 0, t) is shown
versus x for (cy/c;)? =0.3, ad/c,® = 0.05 and bd = 0.4 when c;t/d = 0.5 and 1. In the same figure
the analytical solution (20) for o,, is also produced. The constant B in (20) was determined such
that the value of o, at x =0 and c,t/d = 1 as obtained by the numerical solution coincide with
the analytical value at the same location and time. Its value is Bd/A +2u = 0.18. The constant
contact velocity a was determined directly from the numerical solution and has the value
alc,=0.22 as against the higher value ao=[0.5a/b]}'? = 0.25c,. Since B is a constant of the
problem, once it has been determined, we can immediately utilize it in the solution (20) at any
location beneath the punch and at any time.

It is clearly seen from the figure that good correspondence between the two solutions exist.
The contact region can be clearly distinguished from the graphs of o,, and v. In the present
case of a parabolic punch no singularity in o,, is obtained due to the absence of a corner. It is
clear that solutions for contact velocities which are not in the subsonic domain as well as
solutions for frictional parabolic punches can be obtained easily.

CONCLUSIONS

A numerical treatment to the problem of the two-dimensional dynamic indentation of a
linearly isotropic elastic half-space by a rigid punch has been presented. The numerical
procedure is based on an iterative process which is applied to the boundary conditions and is
continued until the correct solution is obtained. The method is applicable to general shaped
punch and time-dependent indentation velocities. Consequently, time-dependent contact velo-
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Fig. 7(a). Numerical solution (solid lines) and analytical solution (dashed lines) for the contact stresses

induced by the frictionless indentation by a umiformly accelerated parabolic punch. The boundary

conditions are given by (2), (3) with (6) and p(f) =0.5ar%, ad/c,>=0.05, bd =04, (c,/c,?=03. (b)
Numerical solution for the vertical displacements at the surface of the half-space.
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cities can be obtained. The numerical method of solution is examined in several situations
where analytical results are known and good correspondence between the analytical and
numerical results is obtained. Subsonic as well as transonic and supersonic indentation are
treated in the same fashion. Solutions for perfectly frictional and smooth indentations can be
obtained at any point within the half-space.

Possible generalizations of the method can be performed to: (1) The dynamic indentation of

an elastic anisotropic half-space. (2} Combined normal and tangential loading of the half-space
by the punch. (3) Indentation by axially symmetrical-punches.
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